PROYECTO DE MODIFICACIÓN (Y CAMBIO DE NOMBRE) DEL PROGRAMA DE LICENCIADO EN MATEMÁTICAS

Cuerpo Académico de Matemáticas de la Facultad de Ciencias Universidad Autónoma de Baja California

Geometría hiperbólica

Descripción Genérica

Unidad de aprendizaje: Geometría hiperbólica Etapa: Terminal

Área de conocimiento: Geometría

Competencia:

Aplicar los conceptos de variable compleja para identificar y clasificar objetos geométricos con estructura hiperbólica que surgen es esta y otras disciplinas de la ciencia.

Evidencia de desempeño:

Resolución de problemas relacionados con la teoría de geometría hiperbólica en los cuales el alumno tenga que mostrar que puede

- manejar los conceptos propios de la unidad de aprendizaje,
- exponer los conocimientos aprendidos de manera formal, rigurosa y clara, utilizando el análisis y la crítica en las argumentaciones así como las perspectivas propias del curso
- entender la teoría relacionada con la unidad de aprendizaje lo suficiente como para poder aplicarlo a problemas propios de la matemática.

HC **HPC** HL HT **HCL** ΗE CR Requisito Distribución Variable 3 2 0 0 0 3 8 compleia

Contenidos Temáticos

- 1. Los *Elementos* de Euclides.
- 2. El quinto postulado de los *Elementos*.
- 3. Los axiomas de la Geometría Hiperbólica.
- 4. Los modelos de la Geometría Hiperbólica.
- 5. Transformaciones del plano hiperbólico.
- La red de Steiner.
- 7. La métrica hiperbólica y el segundo postulado de los *Elementos*.
- 8. Isometrías hiperbólicas.
- 9. Primeros resultados en Geometría Hiperbólica.
- 10. Superficies con estructura hiperbólica.
- 11. Celosías (mosaicos).

Ensenada B.C. Septiembre 2007 Página 346 de 479

PROYECTO DE MODIFICACIÓN (Y CAMBIO DE NOMBRE) DEL PROGRAMA DE LICENCIADO EN MATEMÁTICAS

Cuerpo Académico de Matemáticas de la Facultad de Ciencias Universidad Autónoma de Baja California

Referencias bibliográficas actualizadas

Básica

- Beardon, A., An introduction to hyperbolic geometry. Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces. Editado por Bedford, Keane y Series. Oxford Science Publications, Oxford University Press, 1991.
- 2. Coxeter, H. S. M., Fundamentos de Geometría. Limusa-Wiley, 1971.
- 3. Coxeter, H. S. M., Non-euclidean Geometry. MAS, 1998.
- 4. **Grünbaum, S.**, *Tillings and Patterns*. W. H. Freeman and Co., 1987.
- 5. Ramírez-Galarza, A., Seade, J., Introducción a la Geometría Avanzada. Las Prensas de Ciencias, UNAM, 2005.
- 6. Ratcliffe, J., Foundations of Hyperbolic Manifolds. GTM 149, Springer Verlag, 1994.
- 7. **Verjovsky, A**., Introducción a la Geometría y las Variedades Hiperbólicas. Departamento de Matemáticas, CINVESTAV, IPN, 1982.

Complementaria

- 1. Escher, M. C., The Graphic Work of M. C. Escher. Koln: Taschen, 1992.
- 2. **Euclides**, *Euclid's Elements*. New York: Dover, 1979.
- 3. Eves, H., Estudio de las Geometrías. UTEHA, 1982.
- 4. **García Campos, M**., *Geometría Hiperbólica para Principiantes*. Tesis de Licenciatura, Facultad de Ciencias, UNAM, 2001.
- 5. Hilbert, D., Foundations of Geometry. Open Court Publishing Co., 1971.
- 6. **Hilbert, D.**, Cohn Vossen, S., *Geometry and the Imagination*. Vínculos Matemáticos No. 150. Facultad de Ciencias. UNAM. 2000.
- 7. **Kline, M.**, *Mathematical Thought from Ancient to Modern Times*. Oxford University Press, 1991.
- 8. Ramírez-Galarza, A., Sienra, G., Invitación a las Geometrías No-euclideanas. Las Prensas de Ciencias, UNAM, 2000.
- 9. Rees, E., Notes on Geometry. Springer-Verlag, 1983.

Ensenada B.C. Septiembre 2007 Página 347 de 479